Maintenance intervention predictions using entity-embedding neural networks
نویسندگان
چکیده
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Chained Predictions Using Convolutional Neural Networks
In this work, we present an adaptation of the sequence-tosequence model for structured vision tasks. In this model, the output variables for a given input are predicted sequentially using neural networks. The prediction for each output variable depends not only on the input but also on the previously predicted output variables. The model is applied to spatial localization tasks and uses convolu...
متن کاملBiomedical Named Entity Recognition Using Neural Networks
We investigate the task of Named Entity Recognition (NER) in the domain of biomedical text. There is little published work employing modern neural network techniques in this domain, probably due to the small sizes of human-labeled data sets, as non-trivial neural models would have great difficulty avoiding overfitting. In this work we follow a semi-supervised learning approach: We first train s...
متن کاملRecurrent neural networks with specialized word embedding for Chinese Clinical Named Entity Recognition
To extract medical clinical related entity mention from patient clinical records is an essential step in clinical research. Recently, many researchers employ neural architecture to tackle the similar task of clinical concept extraction or drug name recognition from English clinical records, and have got prominent progress. However, most previous systems on Chinese Clinical Named Entity Recognit...
متن کاملSEE: Syntax-aware Entity Embedding for Neural Relation Extraction
Distant supervised relation extraction is an efficient approach to scale relation extraction to very large corpora, and has been widely used to find novel relational facts from plain text. Recent studies on neural relation extraction have shown great progress on this task via modeling the sentences in low-dimensional spaces, but seldom considered syntax information to model the entities. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Automation in Construction
سال: 2020
ISSN: 0926-5805
DOI: 10.1016/j.autcon.2020.103202